
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

1 Instructor: Daniel Llamocca

Digital System Design

DIGITAL SYSTEM MODEL

FSM (CONTROL) + DATAPATH CIRCUIT

EXAMPLES

CAR LOT COUNTER

If A = 1 No light received (car obstructing LED A)

If B = 1 No light received (car obstructing LED B)

If car enters the lot, the following sequence (A|B) must be followed:
 00 10 11 01 00

If car leaves the lot, the following sequence (A|B) must be followed:
 00 01 11 10 00

A car might stay in a state for many cycles since the car speed is very large
compared to that of the clock frequency.

DIGITAL SYSTEM (FSM + Datapath circuit)
 Usually, when 𝑟𝑒𝑠𝑒𝑡𝑛 (asynchronous clear) and 𝑐𝑙𝑜𝑐𝑘 are not drawn, they are implied.

FINITE STATE
MACHINEresetn

clock

Inputs

Outputs

CONTROL CIRCUIT

DATAPATH CIRCUIT

B

A

photo
receptors

FINITE STATE
MACHINE

resetn

clock

A

B

CONTROL CIRCUIT

Q
10

10-bit counter

E

ud

E

ud

DATAPATH CIRCUIT

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

2 Instructor: Daniel Llamocca

 Finite State Machine (FSM):

 Algorithmic State Machine (ASM) chart:

S1

S2

resetn=0

yes

no

00

AB=00

AB
11

S3

10

10
AB

00

S4

11
AB

10

01 11

00

S4

01
AB

00

01

E, ud 1

11
10

S6

01
AB

00

S7

11
AB

01

1011

00

S8

10
AB

00

10

E 1

11
01

01

S1 S2

00/00
resetn = 0

A|B/E|ud

01,10,11/00 S3 S4

10/00 11/00

S5

01/00

00/11

00/00

S6

01/00

11/00

10/00 11/00 01/00

01/00

00/00 10/00 11/00

10/00

00/00

S7 S8

11/00 10/00

01/00 11/00

10/0010/00

00/00

00/10

01/00 11/00

00/00 01/00

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

3 Instructor: Daniel Llamocca

7-SEGMENT SERIALIZER

DIGITAL SYSTEM (FSM + Datapath circuit)
 Most FPGA Development boards have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.
 If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one digit at a time on the

7-segment displays.
 Since only one 7-segment display can be used at a time, we need to serialize the four BCD outputs. In order for each digit

to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-illuminated for
3 ms and illuminated for 1 ms). This is taken care of by feeding the output 𝑧 of the ‘counter to 0.001s’ to the enable input

of the FSM. This way, state transitions only occur each 0.001 s.
 Nexys-4/Nexys-4 DDR Board: For each display, we control the individual cathodes (7) of each LED: these active-low signals.

The anode is common: his is the enable signal (active-low). The board has eight 7-segment displays; we are only using four

displays in this circuit: thus, we need to control 4 enable signals and disable the remaining 4 (buf(7..4) = 0).

 Algorithmic State Machine (ASM) chart: This is a Moore-type FSM. The output 𝑠 only depends on the present state.

Note that this is actually a counter from 0 to 3 with enable.

1

S1
resetn=0

s 00

s 01

S2

s 10

S3

s 11

S4

E

E

E

E

1

1

1

0

0

0

0

4

4

4

4

0

1

2

3

2

BCD/HEX
to 7

segments
decoder

2-to-4
decoder

4

A

B

C

D

s

7

4buf buf(3) buf(2) buf(1) buf(0)

FINITE STATE MACHINE

resetn

Counter

(0.001s)

z

E

ABCD

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

4 Instructor: Daniel Llamocca

BIT-COUNTING CIRCUIT

SEQUENTIAL ALGORITHM

DIGITAL SYSTEM (FSM + Datapath circuit)
 Counter Design: EC=1 increases the count. sclr: Synchronous clear. The way this is designed, if sclr = ‘1’, the count is

initialized to zero (here, we do not need EC to be 1).

 Algorithmic State Machine (ASM) chart: Mealy FSM

C 0

while A 0

if a0 = 1 then

C C + 1

end if

right shift A

end while

A

din

s_l

E

0

s_l

E_sr

Parallel Access
Right Shift (MSB to LSB)

s_l = 1 Load

s_l = 0 Shift

Data

n

n

z a0

Q m

counter: m bits

m = ceil(log2(n)) + 1

E

sclr

EC

sclr_C

FINITE STATE MACHINE
s

resetn

C

done

S1

S2

resetn=0

1

0
s

z

sclr_C 1

E_sr, s_l 1

01

EC 1

1

0

E_sr 1

a0

S3

done 1

1
s

0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

5 Instructor: Daniel Llamocca

DEBOUNCING CIRCUIT
 Mechanical bouncing lasts approximately 20 ms. The, we have to make sure that the input signal 𝑤 is stable (‘1’) for at least

20 ms before we assert 𝑤_𝑑𝑏. Then, to deassert 𝑤_𝑑𝑏, we have to make that the 𝑤 is stable (‘0’) for at least 20 ms.

DIGITAL SYSTEM (FSM + Datapath circuit)
 Counter 0 to N-1: E=1 Q = Q+1. sclr: Synchronous clear. The way it is designed, if sclr = ‘1’ and E=’1’, then Q=0.

If T is the period of the clock signal, then 𝑁 =
20𝑚𝑠

𝑇
.

For example, for 100 MHz input clock, T = 10 ns. Then 𝑁 =
20𝑚𝑠

10𝑛𝑠
= 2 × 106

 Algorithmic State Machine:

resetn

Q

clock

n

counter
0 to N-1

z

Q=N-1?

comparator

E
n

FSM

w w_db

sclr

E sclr z

w_db

w

20 ms20 ms

<20 ms <20 ms

S0
resetn=0

E, sclr 1

S1

E 1

S2

w

0

1

1

0
w

1

0
w

z
0

w_db 1

S3

0

1
w

1

w_db, E 1

S4

0

1
w

z
0

1

sclr 1

waits for the
first '1'

for w_db=1,
w must be 1 for
at least 20 ms

waits for the
first '0'

for w_db=0,
w must be 0 for
at least 20 ms

sclr 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

6 Instructor: Daniel Llamocca

SIMPLE PROCESSOR

DIGITAL SYSTEM (FSM + Datapath circuit)
 This system is a basic Central Processing Unit (CPU). For completeness, a memory would need to be included.
 Here, the Control Circuit could be implemented as a State Machine. However, in order to simplify the State Machine design,

the Control Circuit is partitioned into a datapath circuit and a FSM.

OPERATION
 Every time w = '1', we grab the instruction from 𝑓𝑢𝑛 and execute it.
 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = |𝑓2|𝑓1|𝑓0|𝑅𝑦1|𝑅𝑦0|𝑅𝑥1|𝑅𝑥0|. This is called ‘machine language instruction’ or Assembly instruction:

 𝑓2𝑓1𝑓0: Opcode (operation code). This is the portion that specifies the operation to be performed.

 𝑅𝑥: Register where the result of the operation is stored (we also read data from 𝑅𝑥). 𝑅𝑥 can be R1, R2, R3, R4.
 𝑅𝑦: Register where we only read data from. 𝑅𝑦 can be R1, R2, R3, R4.

f = f2f1f0 Operation Function

000 Load Rx, Data Rx Data

001 Move Rx, Ry Rx Ry

010 Add Rx, Ry Rx Rx + Ry

011 Sub Rx, Ry Rx Rx - Ry

100 Not Rx Rx NOT (Rx)

101 And Rx, Ry Rx Rx AND Ry

110 Or Rx, Ry Rx Rx OR Ry

111 Xor Rx, Ry Rx Rx XOR Ry

R0
E

O
_
R
0

E
_
R
0

R1
E

O
_
R
1

E
_
R
1

R2
E

O
_
R
2

E
_
R
2

R3
E

O
_
R
3

E
_
R
3

A
E

O
_
G

E
_
A

G
E

ALU

E
_
e
x
t

CONTROL CIRCUIT

Data

o
p

4

w

fun
7

done

BUS

B

E
_
G

QD
n

Data_in
n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

7 Instructor: Daniel Llamocca

 Control Circuit:
This is made out of some combinational units, a register, and a FSM:

 Ex: Every time we want to enable register 𝑅𝑥, the FSM only asserts Ex (instead of controlling E_R0, E_R1, E_R2, E_R3

directly). The decoder takes care of generating the enable signal for the corresponding register 𝑅𝑥.

 Eo, so: Every time we want to read from register 𝑅𝑦 (or 𝑅𝑥), the FSM only asserts Eo (instead of controlling O_R0,

O_R1, O_R2, O_R3 directly) and so (which signals whether to read from 𝑅𝑥 or 𝑅𝑦). The decoder takes care of generating

the enable signal for the corresponding register 𝑅𝑥 or 𝑅𝑦.

 Arithmetic-Logic Unit (ALU):

op Operation Function Unit

0000

0001

0010

0011

0100

0101

0110

0111

y <= A

y <= A + 1

y <= A - 1

y <= B

y <= B + 1

y <= B – 1

y <= A + B

y <= A – B

Transfer ‘A’

Increment ‘A’

Decrement ‘A’

Transfer ‘B’

Increment ‘B’

Decrement ‘B’

Add ‘A’ and ‘B’

Subtract ‘B’ from 'A'

Arithmetic

1000

1001

1010

1011

1100

1101

1110

1111

y <= not A

y <= not B

y <= A AND B

y <= A OR B

y <= A NAND B

y <= A NOR B

y <= A XOR B

y <= A XNOR B

Complement ‘A’

Complement ‘B’

AND

OR

NAND

NOR

XOR

XNOR

Logic

Rx1

Rx0

Ex

DECODER

with
enable

0

1

2

3

0

1

E

E_R0

E_R1

E_R2

E_R3

Ry

Eo

DECODER
with

enable

0

1

2

3

0

1

E

O_R0

O_R1

O_R2

O_R3

Rx

so

0

1

2

2
2

FSM
done

w

f
3

Ex Eo so E
_
G

O
_
G

E
_
e
x
t

o
p

4

E_fun

QD

E

7
fun

7
funq

funq = |f2|f1|f0|Ry1|Ry0|Rx1|Rx0|

E
_
A

E
_
f
u
n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

8 Instructor: Daniel Llamocca

 Algorithmic State Machine (ASM):
Every branch of the FSM implements an Assembly instruction.

 S1

S2

resetn=0

1

0

E_ext, Ex 1

done 1

Eo, Ex 1

done 1

000

001

Eo, so 1

E_A 1

Eo, E_G 1

op 0110

O_G, Ex 1

done 1

010

S3a

S3b

Eo, E_G 1

op 0111

O_G, Ex 1

done 1

S4a

S4b

Eo, so 1

E_A 1

E_G 1

op 1000

O_G, Ex 1

done 1

S5a

S5b

Eo, so 1

E_A 1

Eo, E_G 1

op 1010

O_G, Ex 1

done 1

S6a

S6b

Eo, so 1

E_A 1

Eo, E_G 1

op 1011

O_G, Ex 1

done 1

S7a

S7b

Eo, so 1

E_A 1

Eo, E_G 1

op 1110

O_G, Ex 1

done 1

S8a

S8b

Eo, so 1

E_A 1

w

f

E_fun 1

011 100 101

110

111

